Testing

CIS 422/522

» Objectives of software testing
» Types of testing

» Testing strategy

» Reflections

OUR GOAL I5TO WRITE
BUGFREE SOFTWARE.
T'LL PAY A TEN-DOLLAR
BONUS FOR EVERY BUG
YOU FIND AND FIX.

bt

;_’ ; 1 HOPE TM GONNA
B\-\@@ HRLS WRITE ME A
% £| DORIVES NEL) MINIVAN
\ ‘ RCAN S\ sl |3 TERGT s arTeR:
\ / Q{\-c" !(%,5‘.“
NI

BEHAVIOR. NOON!

CIS 422/522 Winter 2014

Testing Fundamentals

Coding produces errors

— Data show 30-85 errors are made per 1000 SLOC
Testing: processes of executing the code to
detect errors

In practice, it is impossible to check for all
possible errors by testing

Even checking a useful subset is expensive
— 40%-80% of development cost

— Must be re-done when software changes

— Potentially unbounded effort

CIS 422/522 Winter 2014

Testing Fundamentals (2)

Reality: must settle for testing a subset of
possible inputs

— Even extensively tested software contains 0.5-3 errors
per 1000 SLOC

- Pesticide Paradox: every method used to prevent or find
bugs leaves a residue of subtler bugs against which those
methods are ineffectual [Beizer]

— Always a tradeoff of cost vs. errors found
Fundamental cost/benefit questions

— Which subsets of possible test cases will find the most
errors?

— Which will find the most important errors?
— How much testing is enough?

CIS 422/522 Winter 2014

Ideal Testing Goal

CIS 422/522

» Goal: choose a sufficiently small but adequate
set of test cases (input domain)
— Small enough to economically run the complete
set and re-run when software changes
— “Adequate” much harder to define, generally
means some combination of:
« Acceptably close to required functional behavior
« Contains no catastrophic faults
« Reliable to a an acceptable level (mean time to failure)

« Within tolerance levels for qualities like performance,
security, etc.

CIS 422/522 Winter 2014

Testing Objectives

+ Disagreement over how best criteria for
choosing the test set leads to two general
approaches

+ Fault Detection: testing intended to find as
many faults as possible

+ Confidence Building: testing intended to
increase confidence that the software works
as intended

CIS 422/522 Winter 2014

Why continuing disagreement?

+ Both approaches have notable weaknesses
+ Fault Detection (bug hunt)
— Tests according to coverage criteria
— Equal chance, cost for finding arbitrary error
— Implicitly assumes all bugs are equal, clearly not true in
many cases
-+ Confidence Building (usage emulation)
— Tests according to expected use
— Higher chance of finding bugs that users will routinely
encounter, misses others

— Implicitly assumes that infrequent bugs are
unimportant, also untrue in many cases

CIS 422/522 Winter 2014

Methods by Adequacy Criteria

CIS 422/522

» Methods often classified by the criteria used to
choose the test set
+ Classification based on the source of information
to derive test cases:
— black-box testing (functional, specification-based)
— white-box testing (structural, program-based)
+ Classification based on the criterion to measure
the adequacy of a set of test cases:
— coverage-based testing
— fault-based testing
— error-based testing

CIS 422/522 Winter 2014

White-Box Testing

+ Also “clear box”

+ Testing strategies based on knowledge of the

code within a module

Generally applies one or more forms of coverage

criteria

— Every non-commentary line of code is executed
(statement coverage)

— Every branch is taken (branch coverage)

— Every block of code is executed (block coverage)

— Every path is executed (path coverage)

— Every defined variable is (correctly) used (define-use
coverage)

CIS 422/522 Winter 2014

Black-Box Testing

+ Testing strategies based on knowledge of
interface specification, but not of code that
implements it

» For module tests:

- Returned values conform to syntactic and semantic
specifications for the interface

— Inputs beyond parameter bounds, or that violate syntax
or semantics, throw exceptions

— Performance requirements are met (where defined)
+ For integration and system tests

— Sunny day, rainy day scenarios produce expected
results

— Can be based on use cases

CIS 422/522 Winter 2014

Coverage Testing

+ Looks at internal code structure (white-box)

+ Test set adequacy defined by some form of
coverage criteria

— E.g., % of statements executed
+ Three techniques:
— control-flow coverage
— data-flow coverage
— coverage-based testing of requirements

CIS 422/522 Winter 2014

CIS 422/522

Example: Control Flow Coverage

Model program as flow graph

— E.g., branches are nodes with multiple edges

— An execution is one path through the graph

— Generally very large number of possible paths
Adequacy based on coverage of some aspect of
the graph, in increasing order:

— Node coverage: execute each statement

— Branch coverage: execute each branch

— Path coverage: execute every path

+ % Coverage provides a test-set metric

Many supporting tools

CIS 422/522 Winter 2014

Example: Fault-based Testing

Does not look at code structure (black-box)

Looks for a test set with a high ability to
detect faults

Two techniques:
— Fault seeding
— Mutation testing

CIS 422/522 Winter 2014

Fault Seeding

Adequacy of test set judged by ability to find
seeded errors

— Seeds errors randomly into the code

— Look at percentage of seeded errors found

— Better test sets find more of the seed errors

Infer that those sets will also find more latent
errors

— Look for high percentage of seeded to latent errors

CIS 422/522 Winter 2014 13

CIS 422/522

Example: Operational Scenarios

Focus on confidence building (rather than error-detection),
also black-box

Based on knowledge about how users (will) use the
system

— Inputs based on statistical sampling of actual inputs

— Inputs based on estimates, use cases, user observation, focus

groups, etc.

Supports statistical inference about the likelihood of a
failure in actual use (i.e., Cleanroom)

— Usability requirements

— Performance requirements

Misses unlikely events

— Low-frequency events tend not to be tested (edge cases,
exceptions, unpredictable behavior,

— Some low frequency events are critical

CIS 422/522 Winter 2014 14

Experimental Results

There is no uniformly best technique

Different techniques tend to reveal different types
of faults

Multiple techniques reveal more faults (at a cost)
Cost-effectiveness of run-time testing is low,
particularly compared to inspections (most tests
find no errors)

— Design review: 8.44

— Code review: 1.38

— Testing: 0.17

CIS 422/522 Winter 2014 15

Interpretation

A combination of manual and automated techniques is
most cost effective
People are better at detecting many kinds of errors than
machines
— Logic errors
— Misinterpretations, etc.
Machines are better at repetitive checks and minute
details (comparing values)
Testing works best in a supporting role (checking
assumptions)
— Activity of producing test cases and results double checks other
artifacts
« lIs it well enough defined to write a good test case?
+ Are edge cases defined? Etc.
— Gives feedback on assumptions and expectations: does the
system do what we expect?

CIS 422/522 Winter 2014 16

CIS 422/522

Best Approach

Start early, test often

— For every work product, we ask: How can [find
defects as early as possible?

— Create test plans and test cases as a way of
checking the qualities of requirements, design, etc.

Use a combination of methods

— Inspections and reviews of every artifact

— Testing at every stage possible
+ Manual
+ Module
« System

CIS 422/522 Winter 2014 17

Software Testing in Practice

Most companies’ new hires are testers

— Regarded as less prestigious, lower skilled activity
Most testing work is manual; help from tools is
still limited

In many cases, testing is not performed using
systematic testing methods or techniques
Often delayed, cut short by schedule pressure
Sometimes there are “conflicts of interest”
between testers and developers

— Testing should be “destructive” as possible

— Difficult attitude for developer

Result is poor return for time/money spent

CIS 422/522 Winter 2014 18

QA Planning

Effective testing must be part of the overall plan
— Fully supported by management (time, budget, skills)
— Fully integrated into the development plan from the
beginning
Include use and evaluation of results
— Process for addressing defects found
— Measures of code quality
— Measures of test quality and completeness
Test results must provide feedback for improvement
— Better QA process
— Better coding practices, etc.
Look at example plan

CIS 422/522 Winter 2014

CIS 422/522

Quality is Cumulative

Requirements
Analysis

Are the requirements valid?
Complete? Consistent? Implementable?
« Testable?

Architectural
Design

+ Does the design satisfy requirements?

+ Are all functional capabilities included?

+ Are qualities addressed (performance,
maintainability, usability, etc.?

Detailed
Design

+ Do the modules work together to implement all
the functionality?

« Are likely changes encapsulated?
Is every module well defined

Coding

+ Implement the required functionality?
Race conditions? Memory leaks? Buffer
overflow?

CIS 422/522 Winter 2014

Questions

CIS 422/522 Winter 2014

